

Climate Sensitivities in Short and Long Time Scales

Bing Lin

NASA Langley Research Center

Earth Radiation Budget Workshop École Normale Supérieure

Paris, France, September 13-16, 2010

CERES

Model predictions of the time evolution of the globally averaged temperature change.

Introduction

- Large uncertainty in GCM climate predictions clouds, precipitation, ocean, bio-/cryo-spheres strong nonlinear
- > Climate sensitivity: ??? time scale dependence
 - * short-term variations of Ts and Rnet
 - * long-term relationship of Ts and Rnet

from weather to century time scales

- > Questions for observations:
 - * Can we 'retrieve' (estimate) the climate sensitivity and reduce the uncertainty from measurements?
 - * What is the 'retrieval model' for the feedbacks? Need tools and methods in the analysis

Approaches

- > Climate sensitivity estimations
 - · complex enough for fundamental physics
 - · simple enough to understand processes
 - observational-driven model studies

- > Energy balance & perturbation
- > Key forcing: atmospheric radiation
- > Short- and long-term relationships

Climate perturbation

$$Cp\frac{dTs}{dt} = (1 - \alpha)So - \varepsilon\sigma Ts^4$$

equilibrium state: $\Delta \alpha = \Delta \epsilon = 0$

$$Cp \frac{d\Delta Ts}{dt} = -\frac{4\varepsilon\sigma Ts^{4}}{Ts} \Delta Ts$$

$$= -\frac{4\times237}{288} \Delta Ts = -3.3\Delta Ts$$

$$\mathbf{fn} = -3.3 \text{ W/K/m}^{2}$$

define: $\Delta Ts = T$

This is only for the equilibrium state of the climate. At short time scales, this feature cannot be found.

History

$$Cp\frac{dT}{dt} = -f_nT$$

short-time scale
feedbacks

$$Cp\frac{dT}{dt} = F - f_nT + fT = F - f_sT$$

long-term feedbacks potentially exist

For steady state with small perturbation:

$$T = T0e^{-t/\tau}$$

$$\tau = Cp / fn$$

For forced small perturbation:

$$T = F(1 - e^{-t/\tau})/f_s \qquad \tau = Cp/f_s$$

History (conti.)

Hansen et al. 1984 (Geophys. Monograph); Manabe 1990 (JPO)

- •Estimate total feedback coefficient ftot (actually fs)
- ·Huge heat capacity due to oceans, thus "wait and see"

Recent Progress: Schwartz 2007 JGR Spencer and Braswell 2009 AGU

$$Cp\frac{dT}{dt} = F - ftotT$$

short-term relation

Global Oceanic LW+SW Anomaly
Total Feedback Parameter of ~6.0 W m⁻² K⁻¹

Observation Explanation

Perturbation model: energy balance

$$Cp\frac{dT}{dt} = F + ftotT + N + S$$

N: non-radiative heating (daily)

S: non-feedback natural radiative variability (5-yr cyc)

 f_{tot} : $f_n + f = -6 \text{ Wm}^{-2}\text{K}^{-1}$

F: F = 0 or removed

Cp: 50 m water

Modeling Considerations

Perturbation theory: energy balance model

$$Cp\frac{dT}{dt} = F + fsT + N + S + \frac{fm}{t_0} \int_{t-t_0}^{t} Tdt'$$

N: non-radiative heating (daily) \leftrightarrow avg N = 0

S: non-feedback natural radiation (5-yr cycle) \leftrightarrow avg S = 0

$$f_s$$
: $f_s = f_n + f = -6 \text{ Wm}^{-2}\text{K}^{-1}$; $f = -2.7 \text{ Wm}^{-2}\text{K}^{-1}$

$$f_{tot}$$
: $f_{tot} = f_s + f_m$

F: F = 0 or removed

to: memory length \leftrightarrow minimal (1 year); other lengths also tested

Cp: 100 m mixed layer ocean (slab ocean)

last 10-year results of 100-year run

- 1. Solving boundary conditions instead of initial conditions
- 2. D limits or deep ocean heat transport -- much longer time scale
- 3. Climate system memory generalized feedback (e.g., ice sheets)

Perturbed Climate System

More general conditions are considered in this study

- 1. Boundary condition approach
- 2. System has memory with memory length t_0 (could be multi-cycles)
- 3. There is a deep ocean heat transport

$$Cp\frac{dT}{dt} = F - fsT + \frac{fm}{t_0} \int_{t-t_0}^{t} Tdt' - O$$

$$O = \mu(F - fsT + \frac{fm}{t_0} \int_{t-t_0}^{t} Tdt')$$

$$ftot = fs - fm$$

Analytic System

$$Cp'\frac{dT}{dt} = F - fsT + \frac{fm}{t0}\int_{t-t0}^{t} Tdt'$$

- 1. Avoid the difficulty on deep ocean heat storage
- 2. Solution is not specifically dependent on mixing layer depth, only the ratio of D/η
- 3. Forcing: $F = \gamma t$ (F (t=0) =0; F(t=120yr) = 1.8W/m²)
- 4. $f_S = f_n + f = 6 \text{ W/m}^2/\text{K}$; Thus, $f_{TOT} = f_S f_m$

Reduced forms:

1) t_0 approaches 0; & 2) Ocean heat transport = 0 \rightarrow 1st order ODE of Hansen, Manabe, Schwartz etc

Current solution

- Numerical solution of f_m and η (or μ): easier
 - Analytic solution is also available (solving transcendental equations; more math)

Results

Results

- 1. Most heat is transported to deep ocean ($\mu > 80\%$).
- 2. Total feedback coefficients: $f_{tot} = 6 4.7 = 1.3$ ($t_0 = 1$ yr); $f_{tot} = 6 5.0 = 1.0$ ($t_0 = 10$ yr)
- 3. Positive feedback obtained:

feedback coefficients:
$$fc = 4.7 - 2.7 = 2.0$$

$$fc = 5.0 - 2.7 = 2.3$$

Results

gradually increases in the constant for memory length < 15 yrs

With deep ocean heat transport, the time constant of climate system is much longer, maybe about $70 \sim 120$ yrs.

Linearized Approximation

$$Cp\frac{dT}{dt} = F - fsT + \frac{fm}{t_0} \int_{t-t_0}^{t} Tdt' - O \qquad Cp\frac{dT}{dt} = F - ftotT$$

$$Cp\frac{dT}{dt} = F - ftotT$$

$$ftot = (F - Cp \frac{dT}{dt})/T$$
 $ftot = (F - Qnet)/T$

$$ftot = (F - Qnet)/T$$

$$ftot = (1.8 - 0.85) / 0.65 = 1.46$$
 $u = 0.91$ assuming 100m mixed layer

Reduced forms: resulted in slightly weaker positive feedback than those of the perturbation model calculations

Data needed: surface temperature & TOA net radiation

Summary

- There are large uncertainties in the climate predictions from present global climate models.
- Energy balance model is used for explanation of observed TOA net radiation (or ocean heat storage) and surface temperature.
- Major physical processes of the climate system, such as deep ocean heat transport and system memory, are considered.
- This study targets at boundary instead of classic initial condition problems (actual climate issue).

Summary

- Short-time scale climate system adjustment (or relaxation) alone cannot mimic climate change: different scales, different physics
- For the best estimate of Qnet, estimated feedback factor is $1.0 \sim 1.3$, or, $2 \times CO_2$ (or 3.7 W/m^2) warming about $2.85 \sim 3.7 \text{ K}$. Results is sensitive to Qnet, not Ts and fs. (only provide a tool for public)
- There is a strong desire for long-term radiation missions with calibrations of high accuracy and precision, such as CLARREO & CERES.

Thank You!

- ❖ Lin et al. 2010, ACP
- * Lin et al. 2010, JQSRT